
COURS : PROGRAMMATION DYNAMIQUE – PLUS LONGUE SOUS-SUITE COMMUNE

1

COURS : PROGRAMMATION DYNAMIQUE
= PLUS LONGUE SOUS-SUITE COMMUNE =

Notre quatrième étude de cas concerne le problème du calcul de la plus longue sous-suite
commune (en anglais : Longest Common Subsequence ou LCS). Ce problème classique de
programmation dynamique permet de mesurer la similarité entre deux séquences. Nous
allons construire la solution du problème par programmation dynamique.

I) DÉFINITION DU PROBLÈME .. 2

II) SOUS-STRUCTURE OPTIMALE ET RELATION DE RÉCURRENCE ... 3

II.1. Sous-structure optimale .. 3

II.2. Équation de récurrence sur les valeurs optimales .. 4

III) SOUS-PROBLÈMES ET COMPLEXITÉ .. 4

III.1. Définition des sous-problèmes .. 4

III.2. Schéma de récursion .. 5

III.3. Complexité sans mémoïsation ... 5

IV) ALGORITHMES DE PROGRAMMATION DYNAMIQUE .. 6

IV.1. Algorithme top-down ... 6

IV.2. Complexité de l’algorithme top-down ... 7

IV.3. Algorithme bottom-up ... 7

IV.4. Complexité de l’algorithme bottom-up ... 8

V) ALGORITHME DE RECONSTRUCTION ... 8

V.1. Principe et algorithme de reconstruction ... 8

V.2. Complexité finale .. 9

COURS : PROGRAMMATION DYNAMIQUE – PLUS LONGUE SOUS-SUITE COMMUNE

2

I) DÉFINITION DU PROBLÈME

Une instance du problème est spécifiée par deux chaînes de caractères : une chaîne S1 de
longueur n et une chaîne S2 de longueur m.

Une sous-suite (on dit aussi sous-séquence) d’une chaîne est obtenue en supprimant zéro,
un ou plusieurs caractères, sans changer l’ordre des caractères restants (contrairement à
une sous-chaîne, elle n’est pas forcément contiguë).

Par exemple, si S = "informatique", alors "info", "format", "ique" sont des sous-suites (pas
forcément uniques), et "iatq" aussi (on garde l’ordre, mais on saute des lettres).

La plus longue sous-suite commune de S1 et S2 est une sous-suite qui est sous-suite de S1 et
de S2 et qui a une longueur maximale.

On note généralement LCS(S1, S2) une plus longue sous-suite commune (la séquence), et
ℓ(S1, S2) sa longueur.

Problème de la plus longue sous-suite commune (LCS)

Entrée : Deux chaînes de caractères S1 et S2.

Sortie : Un entier ℓ (S1, S2), égal à la longueur de la plus longue sous-suite commune de
S1 et S2.

Exemple : Soient S1 = "ABC" et S2 = "BAC".

Les sous-suites de "ABC" incluent : "", "A", "B", "C", "AB", "AC", "BC", "ABC". Celles de "BAC"
incluent : "", "B", "A", "C", "BA", "BC", "AC", "BAC". Les sous-suites communes les plus
longues ont longueur 2 : par exemple "AC" ou "BC". Donc ℓ(S1, S2) = 2.

La plus longue sous-suite commune a de nombreuses applications pratiques :

- Bio-informatique : comparer des séquences ADN ou protéiques pour détecter des
similarités évolutives ;

- Comparaison de fichiers : l'algorithme diff (utilisé par Git) s'appuie sur la LCS pour
identifier les lignes modifiées ;

- Détection de plagiat : mesurer la similarité structurelle entre deux textes ;
- Correction orthographique : suggérer des corrections en trouvant des parties

communes.

Pour résoudre ce problème de manière exhaustive (par brute force), il faudrait tout d'abord
lister toutes les sous-suites possibles de S1, puis pour chacune, vérifier si elle est aussi une
sous-suite de S2, et enfin garder la plus longue.

Une chaîne de longueur n possède 2n sous-suites (chaque caractère peut être inclus ou non).
Vérifier si une sous-suite de longueur k est présente dans S2 se fait en O(m). Dans le pire des
cas, le nombre de vérifications à effectuer est donc de O(m∙2n). C'est un problème
exponentiel qui demande une approche plus efficace.

COURS : PROGRAMMATION DYNAMIQUE – PLUS LONGUE SOUS-SUITE COMMUNE

3

II) SOUS-STRUCTURE OPTIMALE ET RELATION DE RÉCURRENCE

Pour appliquer la programmation dynamique, on doit identifier des sous-problèmes
pertinents et une relation de récurrence entre eux, issue de la structure d’une solution
optimale.

II.1. Sous-structure optimale

Considérons une instance du problème avec une chaîne S1[1..n] et une chaîne S2[1..m].
Regardons les derniers caractères des deux préfixes pour établir la sous-structure optimale.

Deux cas sont possibles pour traiter les derniers caractères des préfixes S1[1..n] et S2[1..m] :

Cas n°1 : Les derniers caractères sont identiques (match) : S1[n] == S2[m]

Si S1[n] == S2[m], alors ce caractère commun fait nécessairement partie d'une LCS optimale.
En effet, si on avait une LCS qui n'utilisait pas ce caractère commun, on pourrait l'ajouter à la
fin et obtenir une sous-suite commune plus longue.

Rechercher la LCS de S1[1..n] et S2[1..m] revient donc à rechercher la LCS de S1[1..n-1] et
S2[1..m-1], puis à ajouter ce caractère commun :

𝐿𝐶𝑆 (𝑆1[1. . 𝑛], 𝑆2[1. .𝑚]) = 𝐿𝐶𝑆 (𝑆1[1. . 𝑛 − 1], 𝑆2[1. . 𝑚 − 1]) + 1

Exemple : S1 = "ABC" et S2 = "ADC"
- Les derniers caractères sont identiques ('C' == 'C').

 LCS("ABC", "ADC") = LCS("AB", "AD") + 1.

Cas n°2 : Les derniers caractères sont différents (pas de match) : S1[n] ≠ S2[m]

Si S1[n] ≠ S2[m], alors au moins l'un des deux derniers caractères ne fait pas partie de la LCS.
On a donc deux sous-cas à explorer :

Sous-cas 2a : Le dernier caractère de S1 ne fait pas partie de la LCS. On cherche alors la
LCS de S1[1..n-1] et S2[1..m].

Sous-cas 2b : Le dernier caractère de S2 ne fait pas partie de la LCS. On cherche alors la
LCS de S1[1..n] et S2[1..m-1].

La LCS optimale est le maximum de ces deux possibilités :

𝐿𝐶𝑆 (𝑆1[1. . 𝑛], 𝑆2[1. . 𝑚]) = 𝑚𝑎𝑥 {
𝐿𝐶𝑆(𝑆1[1. . 𝑛 − 1], 𝑆2[1. .𝑚])

𝐿𝐶𝑆(𝑆1[1. . 𝑛], 𝑆2[1. .𝑚 − 1])

Exemple : S1 = "ABC" et S2 = "ABD"
- Les derniers caractères sont différents ('C' ≠ 'D').

 LCS("ABC", "ABD") = max{LCS("AB", "ABD"), LCS("ABC", "AB")}.

COURS : PROGRAMMATION DYNAMIQUE – PLUS LONGUE SOUS-SUITE COMMUNE

4

II.2. Équation de récurrence sur les valeurs optimales

On note Li,j la longueur de la LCS entre les i premiers caractères de S1 et les j premiers
caractères de S2.

Remarque : Si S1[i] == S2[j], alors toute sous-suite commune optimale pour S1[1..i] et S2[1..j]
peut être supposée se terminer par ce caractère commun. On obtient donc directement

𝐿𝑖,𝑗 = 𝐿𝑖−1,𝑗−1 + 1

Il est alors inutile de calculer les deux autres candidats Li-1,j et Li,j-1 : ils correspondent à
« ignorer » l’un des deux caractères, ce qui ne peut pas donner mieux qu’utiliser ce match et
prolonger une solution optimale sur les préfixes (i-1, j-1).

Récurrence sur la valeur de la solution optimale

Pour tout i  {0..n} et j  {0..m}, les cas de base sont :
- L0,j = 0 (la chaîne vide n'a aucun caractère commun avec S2),
- Li,0 = 0 (S1 n'a aucun caractère commun avec la chaîne vide).

Pour tout i  {1..n} et j  {1..m} :

𝐿𝑖,𝑗 =

{

𝐿𝑖−1,𝑗−1 + 1 𝑠𝑖 𝑆1[𝑖] == 𝑆2[𝑗] (𝑐𝑎𝑠 𝑛°1 − 𝑚𝑎𝑡𝑐ℎ)

𝑚𝑎𝑥 {
𝐿𝑖−1,𝑗
𝐿𝑖,𝑗−1

𝑠𝑖𝑛𝑜𝑛 (𝑐𝑎𝑠 𝑛° 2 − 𝑝𝑎𝑠 𝑑𝑒 𝑚𝑎𝑡𝑐ℎ)

III) SOUS-PROBLÈMES ET COMPLEXITÉ

III.1. Définition des sous-problèmes

Ici, les sous-problèmes sont indexés par les paramètres i (longueur du préfixe de S1, de 0 à n)
et j (longueur du préfixe de S2, de 0 à m). Quand i = 0 ou j = 0, S1[1..0] et S2[1..0] sont des
chaînes vides.

En faisant varier ces deux paramètres sur toutes les valeurs pertinentes, nous obtenons nos
sous-problèmes :

Sous-problèmes de la plus longue sous-suite commune

Calculer Li,j, la longueur de la LCS entre le préfixe de longueur i de S1 et le préfixe de
longueur j de S2

(Pour chaque i = 0, 1, 2 … n et j = 0, 1, 2 … m)

Le plus grand sous-problème (avec i=n et j=m) est exactement le problème original.

COURS : PROGRAMMATION DYNAMIQUE – PLUS LONGUE SOUS-SUITE COMMUNE

5

III.2. Schéma de récursion

Le schéma de récursion complet sur un exemple où on cherche la LCS entre S1 = "on" et S2 =
"bon" est donné sur la figure ci-dessous. Comme on le verra après, l’algorithme top-down ne
calculera pas tous ces cas mais ils sont montrés ici pour illustrer le problème dans son
ensemble :

- La notation ["on","bon"] signifie qu’on cherche la longueur optimale pour S1 = "on"
et S2 = "bon";

- La notation L[2][3] = 2 signifie que la longueur de la LCS entre les 2 premiers
caractères de S1 et les 3 premiers de S2 vaut 2 ;

- Dans le cas n°1 (branche de gauche), à partir des cas de base (en vert), on remonte la
valeur L[i-1][j-1] + 1 si S1[i] == S2[j] ;

- Dans les deux sous-cas n°2a et n°2b (branches de droite), à partir des cas de base (en
vert), on remonte la valeur L[i-1][j] (sous-cas 2a) et L[i][j-1] (sous-cas 2b).

- Les valeur L[i][j] prennent le maximum des valeurs remontées.

Figure 1 : Schéma de récursion du problème de la sous-suite maximale

III.3. Complexité sans mémoïsation

À chaque étape, on diminue i ou j (ou les deux). La profondeur de récursion est donc au plus
(n + m).

Dans le pire des cas (quand S1[i] ≠ S2[j] presque partout), chaque nœud se ramifie en 2, ce
qui donne un arbre de récursion pouvant contenir jusqu’à O(2n+m) nœuds (ordre de grandeur
exponentiel).

Le travail local à chaque nœud est en O(1) (comparaisons, max, +1), donc l’algorithme
récursif sans mémoïsation est exponentiel.

Remarquons cependant qu'il n'y a que (n+1)·(m+1) sous-problèmes distincts. De nombreux
appels récursifs portent donc sur les mêmes sous-problèmes, d'où l'intérêt de la
mémoïsation.

https://www.informatique-f1.fr/dp/SousSuiteCommune/

https://www.informatique-f1.fr/dp/SousSuiteCommune/

COURS : PROGRAMMATION DYNAMIQUE – PLUS LONGUE SOUS-SUITE COMMUNE

6

IV) ALGORITHMES DE PROGRAMMATION DYNAMIQUE

IV.1. Algorithme top-down

On mémorise les valeurs déjà calculées Li,j dans un dictionnaire, afin de ne jamais recalculer
deux fois le même sous-problème.

Algorithme top-down pour le calcul des valeurs optimales

Entrée : S1[1, …, n] : Chaîne S1
S2[1, …, m] : Chaîne S2

Sortie : ℓ (S1, S2)

Dictionnaire de mémoïsation
L := {}

rec_opt_val_LCS (i, j) :

i : longueur du préfixe de S1
j : longueur du préfixe de S2

Utilise la mémoïsation
Si (i, j) est dans L :
 Retourner L[(i, j)]

Cas de base i ==0 ou j == 0
Si i == 0 ou j == 0:

L[(i, j)] := 0
Retourner L[(i, j)]

Cas 1 (match)
Si S1[i] == S2[j] :

L[(i, j)] := rec_opt_val_LCS(i - 1, j - 1) + 1
Sinon

Cas 2a et 2b
V1 := rec_opt_val_LCS (i - 1, j)
V2 := rec_opt_val_LCS (i, j - 1)
L[(i, j)] := max (V1, V2)

Retourner L[(i, j)]

Appel initial
résultat := rec_opt_val_LCS (n, m)

Avec cet algorithme, seuls les cas réellement utiles sont calculés (voir la remarque en page 4
sur l’équation de la récurrence)

Le schéma de récursion en page suivante montre quels sont les cas réellement calculés dans
le même exemple que précédemment ainsi que les valeurs enregistrées dans la table de
mémoïsation.

COURS : PROGRAMMATION DYNAMIQUE – PLUS LONGUE SOUS-SUITE COMMUNE

7

Figure 2 : Application de l'algorithme top-down et table de mémoïsation associée

IV.2. Complexité de l’algorithme top-down

Les états possibles sont les couples (i, j) avec 0 ≤ i ≤ n et 0 ≤ j ≤ m, soit au plus (n+1)∙(m+1),
c’est-à-dire O(n·m) sous-problèmes.

Avec la mémoïsation, chaque (i, j) est calculé au plus une fois, et le calcul effectue un travail
local en O(1). La complexité en temps est donc O(n·m).

L’espace nécessaire pour sauvegarder les informations dans le dictionnaire est O(n∙m).
La profondeur de récursion est au plus (n + m), donc la pile est en O(n + m). L’espace total
est dominé par le dictionnaire : O(n·m).

IV.3. Algorithme bottom-up

L’algorithme bottom-up consiste à remplir progressivement la table des solutions des sous-
problèmes en utilisant la relation de récurrence, en partant des cas de base.

Algorithme bottom-up pour le calcul des valeurs optimales

opt_val_LCS (i, j) :
Cas de base i ==0 ou j == 0
Pour j allant de 0 à m :

L[(0, j)] := 0
Pour i allant de 0 à n :

L[(i, 0)] := 0

Remplissage de la table
Pour i allant de 1 à n :

Pour j allant de 1 à m :
Si S1[i] == S2[j] :

L[(i, j)] := L[(i - 1, j - 1)] + 1
Sinon :

L[(i, j)] := max(L[(i - 1, j)], L[(i, j - 1)])

Retourner L[(n, m)]

COURS : PROGRAMMATION DYNAMIQUE – PLUS LONGUE SOUS-SUITE COMMUNE

8

IV.4. Complexité de l’algorithme bottom-up

L’algorithme bottom-up calcule toutes les cases (i, j) pour 0 ≤ i ≤ n et 0 ≤ j ≤ m, soit
exactement (n+1)·(m+1) calculs, chacun en O(1). La complexité en temps et en espace est
donc O(n·m).

V) ALGORITHME DE RECONSTRUCTION

V.1. Principe et algorithme de reconstruction

Jusqu’ici, on a calculé la longueur ℓ(S1, S2). L’objectif est maintenant de reconstruire une
plus longue sous-suite commune (pas seulement sa longueur).

On peut reconstruire une LCS en retraçant un chemin depuis L[n][m] jusqu'à L[0][0] :

- Si S1[i] == S2[j], alors ce caractère appartient à une LCS : on l’ajoute, puis on va en
(i−1, j−1).

- Sinon, on regarde quel voisin (i−1, j) ou (i, j−1) conserve la valeur optimale, et on se
déplace vers lui.

Remarque : la LCS n’est pas forcément unique. En cas d’égalité entre L[i−1][j] et L[i][j−1],
différents choix de déplacement peuvent conduire à différentes LCS, toutes de longueur
maximale.

Algorithme de reconstruction

Entrée : S1[1, …, n] : Chaîne S1
 S2[1, …, m] : Chaîne S2
 L = {(i, j) : … }: Dictionnaire / table des valeurs optimales
Sortie : Seq[…] : Une LCS (liste de caractères)

Reconstruction (S1, S2, D) :
Seq := []
i := n
j := m

Tant que i > 0 et j > 0 :

Cas du match (prioritaire)
Si S1[i] == S2[j] et L[(i, j)] == L[(i - 1, j - 1)] + 1:

Ajouter S1[i] à la liste Seq
i := i - 1
j := j - 1

Cas 2a
Sinon si L[(i - 1, j)] >= L[(i, j - 1)]
 i := i - 1
Cas 2b
Sinon :
 j := j - 1

Retourner Seq renversée

COURS : PROGRAMMATION DYNAMIQUE – PLUS LONGUE SOUS-SUITE COMMUNE

9

Remarque importante : avec l’algorithme top-down proposé, certaines valeurs voisines
peuvent ne pas exister dans le dictionnaire. En effet, en cas de match, seul L[i-1][j-1] a été
calculé, tandis que L[i-1][j] et L[i][j-1] n'existent pas.

Pour garantir la compatibilité, l’algorithme de reconstruction doit tester le cas du match en
priorité.

La figure ci-dessous illustre ce principe de reconstruction avec S1 = "on" et S2 = "bon" :

Figure 3 : Principe de reconstruction de la solution optimale

V.2. Complexité finale

La reconstruction parcourt au plus (n + m) étapes (à chaque étape, on diminue i ou j ou les
deux), avec un travail local en O(1). Le temps de reconstruction est donc de O(n + m) et
l’espace de reconstruction est O(n + m) si on stocke la séquence reconstruite.

La complexité totale (calcul + reconstruction) est donc de O(n∙m) + O(n + m) = O(n∙m).

Si on ne veut que la longueur ℓ(S1, S2) (pas la reconstruction), on peut réduire l’espace de
O(n·m) à O(min(n, m)) en ne gardant que la ligne (ou colonne) précédente. En revanche,
pour reconstruire une sous-suite, il faut en général conserver davantage d’informations
(table complète ou informations de parenté).

